MATH SOLVE

5 months ago

Q:
# Which translation maps the vertex of the graph of the function f(x) = x2 onto the vertex of the function g(x) = x2 + 2x +1?right 1 unitleft 1 unitright 2 unitsleft 2 units

Accepted Solution

A:

Answer:Option B is correctLeft 1 unit.Explanation:According to the graph theory of transformation:y = f(x+k)=[tex]\left \{ {{k>0 shift graph of y= f(x) left k unit} \atop {k<0} shift graph of y= f(x) right |k| unit} \right.[/tex]Given the parent function: [tex]f(x)=x^2[/tex] and the function [tex]g(x)=x^2+2x+1[/tex] we can write it as:g(x)= [tex](x+1)^2[/tex] Β [ β΄[tex](a+b)^2 = a^2+2ab+b^2[/tex] ] Therefore, vertex of the graph of the function [tex]g(x)=(x+1)^2[/tex] is 1 units to the left of the vertex of the graph of the function [tex]f(x)=x^2[/tex] .